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Abstract

Introduction: The prognosis of patients at the pre-dementia stage is difficult to define.

The aim of this study is to develop and validate a biomarker-based continuous model

for predicting the individual cognitive level at any future moment. In addition to per-

sonalized prognosis, such a model could reduce trial sample size requirements by

allowing inclusion of a homogenous patient population.

Methods: Disease-progression modeling of longitudinal cognitive scores of pre-

dementia patients (baseline Clinical Dementia Rating ≤ 0.5) was used to derive a

biomarker profile that was predictive of patient’s cognitive progression along the

dementia continuum. The biomarker profile model was developed and validated in the

MEMENTO cohort and externally validated in the Alzheimer’s Disease Neuroimaging

Initiative.

Results: Of nine candidate biomarkers in the development analysis, three cere-

brospinal fluid and two magnetic resonance imaging measures were selected to form

the final biomarker profile. The model-based prognosis of individual future cognitive

deficit was shown to significantly improve when incorporating biomarker informa-

tion on top of cognition and demographic data. In trial power calculations, adjusting

the primary analysis for the baseline biomarker profile reduced sample size require-

ments by ≈10%. Compared to conventional cognitive cut-offs, inclusion criteria based

on biomarker-profile cut-offs resulted in up to 28% reduced sample size requirements

due to increased homogeneity in progression patterns.

Discussion: The biomarker profile allows prediction of personalized trajectories of

future cognitive progression. This enables accurate personalized prognosis in clinical

care and better selection of patient populations for clinical trials. Aweb-based applica-

tion for prediction of patients’ future cognitive progression is available online.

1 BACKGROUND

Individual Alzheimer’s disease (AD) patient prognosis or the power to

detect treatment effects in interventional clinical trials in neurode-

generative diseases is often hampered by substantial differences in

disease progression on the patient level.1 In AD dementia stages,

it is well established that cognitive ability at baseline is a primary

predictor of future rate of decline,2 due to an increasing rate of
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cognitive and functional deterioration along the course of disease.3

In pre-dementia stages there is typically little or no measurable cog-

nitive deficit with variation in cognitive scores being more related

to non–disease-specific differences than disease pathology load. The

large variation in disease trajectories between individuals blurs sig-

nals of treatment effect and forces AD trials to be extensively large

and highly expensive. Sample sizes of up to 2000 patients per arm fol-

lowedover adurationof4years are required to achieve80%powerof a

modestly effective drug in preclinical AD.4 Effective patient stratifica-

tion could reduce variation of cohorts considerably and increase power

to detect treatment effects.5 For example, it would require ≈600 sub-

jects withmild cognitive impairment (MCI) per arm followed over a 24-

month study to reach 80% power for detecting a 25% slowing in the

annual rate of decline ofClinicalDementia Rating (CDR)6 sumof boxes,

while an enriched patient population with positive amyloid biomarkers

and evidence of brain atrophy would reduce the sample size require-

ments by 58%.5

Traditionally, prognosis of future cognitive progression of individu-

als has been based on cognitive criteria. However, as more focus has

been on selecting patients at early stages of dementia, cognitive cut-

offs becomeof limited value for recruiting a homogeneous patient pop-

ulation as two patientswith similar cognitive level could have quite dis-

tinct future cognitive progression.7 Incorporating biomarker informa-

tion for patient staging and prediction of future cognitive decline have

been extensively investigated and shown to have a positive effect on

stratification.1,5,8–12 Accurate predictions of future cognitive decline

for pre-dementia patients could be used to detect at-risk patients, to

improve clinical trials, and to aid health-care practitioners determine

treatment paths for patients, as illustrated in Figure 1. The recently

finalized TADPOLE challenge13 gathered results from 92 algorithms

for predicting the future progression of patients at risk of AD on three

outcomes: clinical diagnosis, cognitive decline, and ventricle volume.

The results showed in general that inclusion of information from diffu-

sion tensor imaging and cerebrospinal fluid (CSF) biomarkers improved

predictive performance of the prediction algorithms.

Most works studying the effect of biomarker measures for

patient stratification and prediction of future progression rely on

discrete grouping of patients. Many use predefined clinical group-

ings of patients (e.g., cognitively normal, MCI, dementia) and pre-

dict these states or transitions between them using biomarkers.12,14

An alternative approach is to group patients based on abnormality

of biomarker measures and study progression of these biomarker-

defined groups.15,16 The recently proposed ATN (amyloid deposition,

tauopathy, and neurodegeneration) framework17 is an example of the

latter. TheATN frameworkdivides individuals into eight distinct groups

based on biomarker abnormality profiles, with the amyloid-positive

profiles being related to different stages of the AD pathological

cascade.18 However, the dichotomization of a continuous biomarker

measure into normal or abnormal depends on the modality used to

measure the biomarker and results in a loss of predictive power of

future decline.19 In an important recent work, vanMaurik et al.20 used

non-dichotomized ATN biomarker profiles to predict dementia risk for

individuals with MCI, showing that a combined ATN profile based on

RESEARCH INCONTEXT

1. Systematic review: Reviewing the literature, we found

many studies linking fluid and imaging biomarkers to cog-

nitive status and rate of decline in dementia. However,

only a few studies addressed the added value of biomark-

ers compared to conventional cognitive assessments and

fewer studied combinations of biomarkers. Furthermore,

almost all the reviewed studies categorized patients in

discrete disease stages based on either cognitive cut-offs

or biomarker positivity. Such dichotomization disregards

the continuously progressive nature of cognitive decline

and potentially leads to considerable variation in individ-

ual cognitive progression patterns for study populations

due to large heterogeneity within the discrete groups.

2. Interpretation: Our study refrains from dichotomizing

clinical scales and biomarker measures but uses the con-

tinuous information to stage patients along a disease con-

tinuum. The analyses suggest that including information

from a combination of biomarkers improves predictions

of patients’ current and future progression along the dis-

ease continuum, which is highly useful in clinical prac-

tice. We validated both internally and externally that the

developed biomarker profile improves prediction beyond

cognitive scores. In addition to personalized prognosis,

this improved knowledge of future cognitive progression

of individuals can be used to select more homogeneous

cohorts for clinical trials which has potential for decreas-

ing sample size requirements.

3. Future directions: Future work should address the value

of including alternative biomarkers and confirm the util-

ity of the biomarker profile in the setting of interventional

clinical trials.

both CSF and imaging improved the predictive performance overmod-

els including only imaging or CSF biomarkers. This approach avoids the

loss of information that would result by dichotomizing biomarker pro-

files, but it does lose information by using a binary outcome (progres-

sion to dementia). A similar approach was used for plasma biomarkers

in a recent study that in addition to progression to dementia predicted

future cognitive decline.21

Disease progression modeling over a time continuum can be used

to describe the time evolution of clinical scales and biomarkers

on a natural disease time scale.3,22–24 Compared to conventional

approaches for predicting future cognitive trajectories, disease pro-

gression modeling enables better use of the data and more stable

estimates by assuming that patient trajectories are randomly per-

turbed observations of the progression along a continuum. Using

such approaches, it has previously been demonstrated that individual

patient progression along a disease continuumcanbe predicted using a
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F IGURE 1 Two patients (green and yellow)
with identical characteristics, Mini-Mental
State Examination (MMSE) scores, and
biomarker values except for cerebrospinal fluid
(CSF) total tau. Due to the wide prediction
interval of possible disease progression stages
in pre-dementia, the future cognitive
progression cannot be accurately predicted
from cognitive scores. Knowledge of
differences in biomarkers may improve the
staging of patients along the disease
continuum. A𝛽, amyloid beta; CDR, Clinical
Dementia Rating

combination of biomarkers.3 However, this prediction model required

simultaneous collection of CSF, magnetic resonance imaging (MRI),

and two positron emission tomography (PET) scans, making it highly

impractical for implementation in clinical practice. Furthermore, these

prediction results have not been externally validated.

The aimof this study is developing and validating a biomarker-based

continuous predictive model allowing reduction in trial sample sizes

together with defining the individual cognitive prognosis at any future

moment. The model is developed using data from the MEMENTO

study25 and externally validated using data from the Alzheimer’s Dis-

ease Neuroimaging Initiative (ADNI) study. A web-based application

is available for predicting future cognitive decline and location on the

disease continuum of a patient based on user-specified demographics

and biomarker measures (see https://disease-progression.shinyapps.

io/disease_progression/).

2 METHODS

2.1 Data description

Patient-level data from the MEMENTO study25 were used for model

development. The MEMENTO cohort includes patients from 26

university-based memory clinics scattered across France. Included

subjects either had very mild to mild cognitive impairment (defined

by cognitive abilities at least one standard deviation below age, sex,

and education level–adjusted norms) or had subjective cognitive com-

plaints andwere at least 60years old. Individualswere required tohave

a CDR global score of 0 or 0.5 and no diagnosis of dementia at baseline.

At the time of their inclusion, participants underwent 3DT1 brainMRI,

an optional lumbar puncture, and a fluorodeoxyglucose (18FDG) PET

scan.

The development of a biomarker profile predictive of a patient’s

future cognitive trajectory along the disease continuum included

the following baseline biomarker candidates: CSF measures of total

tau, phosphorylated tau (p-tau 181), amyloid beta (A𝛽)1-42, A𝛽1-40,

and their ratio A𝛽1-42/A𝛽1-40 based on the INNOTEST sandwich

enzyme-linked immunosorbent assay (Fujirebio); hippocampal volume

(volumetric MRI using SACHA software26); global FDG-PET uptake;

and both AD-signature meta-region of interest (ROI) thickness and

volumes27 (derived using FreeSurfer).

Individuals with complete biomarker data were included in the

development set. Study subjects were split into two groups based on

their baseline CDR global score: an asymptomatic group with a base-

line CDR global score of 0 and aMCI groupwith a baseline score of 0.5.

The measure for determining cognitive decline was longitudinal

Mini-Mental State Examination scores28 (MMSE; range 30 to 0 with

low scores indicatingmore severe cognitive impairment).

The biomarker profile construct was externally validated using sub-

jects from the ADNI (adni.loni.usc.edu) cohort. Subjects were included

in the external validation study if they had the same biomarker mea-

sures at baseline and a baseline CDR global score ≤0.5. The differ-

ences in biomarker assays betweenMEMENTO and ADNI is described

in Table S1 in supporting information. Up to 3 years of follow-up data

were included in the analyses.

2.2 Statistical analysis

Longitudinal MMSE scores were modeled using a nonlinear mixed-

effects disease-progressionmodel.3 Themodel estimates apopulation-

level cognitive trajectory along the disease continuum based on the

observed longitudinal trajectories. This population-level trajectory

describes the general progression of cognitive decline that one would

expect an individual to have as they progress through the disease

continuum. A subject-level random effect is included in the model to

describe the deviation in how long the subject is progressed along the

population-level disease continuum (horizontal variation). This model

structure enables inclusion and tests the predictive ability of biomark-

ers on patients’ progression state along the disease continuum.

Assume n subjects have been included for analysis and the

ith subject has been assessed at mi time points ti1 < ti2 < … < timi

https://disease-progression.shinyapps.io/disease_progression/)
https://disease-progression.shinyapps.io/disease_progression/)
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(e.g., at baseline/0 months, 6 months, 12 months). The number of

observed time points mi and observation times may vary across

subjects. Let yi = (yi1,… , yimi) denote the vector of longitudinally

observed MMSE scores for the ith subject and in addition let xi
be a time-invariant covariate vector for subject i with associated

unknownmodel parameters𝛽. In the following analyses the considered

covariates will be demographic information and baseline biomarker

measures. The longitudinal progression of the MMSE scores are

modeled as

yij = 𝜇
(
tij − xTi 𝛽 − zi

)
+ 𝜀ij , i = 1,… , n, j = 1,… , mi,

where 𝜇 is a function modeling the population-level time-evolution of

cognitive decline, zi ∼ N(0, 𝜏2) is the random subject-specific variation

in progression along the continuum, and 𝜀ij ∼ N(0,𝜎2) is independent

identically distributed Gaussian noise.

The population-level cognitive trajectory 𝜇 is modeled as a general-

ized logistic function

𝜇 (t) = A +
K − A

(1 + exp (−Bt))
v

where A and K are the lower and upper asymptotes, respectively; B

describes the rate of progression; and v controls where the maximal

rate of decline occurs. Because MMSE scores are restricted to values

within [0, 30], the lower asymptote A was fixed at 30 (no measurable

cognitive deficit) and the upper asymptote K was fixed at 0 (severe

cognitive deficit). The shape parameters B, v were estimated from the

data. Specifically, the rate of progression could depend on covariates

B = B0 + xTB,i𝛽B.

At each observed time point, tij, representing a visit of patient i, the

model assumes that patient iwill beprogressed to location tij − xTi 𝛽 − zi
on the disease continuum, which is described by the population-level

disease trajectory 𝜇. The model predicts these individual locations of

patients along thedisease continuumsuch that theobserved trajectory

ofMMSE scores alignswith the population level of decline. The individ-

ual location of subject i at baseline ti1 = 0 is split into a fixed effect xTi 𝛽

that depends on covariates (e.g., age, level of education, biomarkers)

and a subject-specific random effect zi that models the residual vari-

ation in the positioning that cannot be attributed to covariate effects.

This prediction of location of a patient along the disease continuumcan

be considered a continuous way of staging patients. Usually patients

are stagedby categorizing them into discrete groups, but in the present

study, we estimate a full disease continuum and predict the relative

staging of patients based on their disease severity in a fully continuous

manner.

All model parameters were estimated using maximum-likelihood

estimation, and predictions of progressions along the disease contin-

uum were the maximum a posteriori prediction of the fitted model

based on each individual’s baseline scores and covariates.

In the development study, four models were compared for inves-

tigating the effect of different biomarker modalities for outlining the

disease continuum. All four models included a covariate effect of base-

line CDR global score on the location along the continuum. The base

model used forward selection to estimate the covariate effects of edu-

cation level, sex, and age, on both the rate of decline, B, and dis-

ease progression. The three other models were built from the base

model and used forward selection to include covariate effects of base-

line biomarker observations. The three models were: a model includ-

ing MRI biomarkers, a model including CSF biomarkers, and the full

biomarker model including both MRI and CSF biomarkers as well as

FDG PET. The forward selection procedure was based on the Akaike

information criterion.29

To investigate the effect of cut-offs for dichotomizing amyloid and

tau positivity based onCSFA𝛽1-42 andp-tau, two additional CSFmod-

els were evaluated. The firstmodel used the continuous biomarker val-

ues for predicting the location of subjects on the disease continuum,

and the second model used amyloid and tau positivity based on pre-

specified cut-offs for its prediction. In addition to CSF p-tau and A𝛽1-

42, bothmodels included the terms from the basemodel.

2.3 Internal and external validation

The findings in the development study were validated internally and

externally. Individuals not included in the development set due to par-

tially missing biomarker data, but who had complete biomarker data

for the selected biomarker profile, were used as an internal validation

set. The internal validation investigated the predictive performance of

the models on this held-out validation set in MEMENTO. The external

validation study evaluated the identified biomarker models from the

development study on data from the ADNI cohort. Because of differ-

ences in the CSF biomarker assays in ADNI and MEMENTO (see Table

S1), CSF biomarkers were normalized to ensure that parameters were

comparable across cohorts. Because ADNI includes subjects with no

cognitive deficit, the normalizationwas basedon the distribution of the

subgroup with a CDR global score 0.5 to ensure comparability across

cohorts. The normalization process consisted of independently shifting

and scaling each biomarker variable in each cohort such that the mini-

mal normalized value in the group of subjects with CDR global score of

0.5 at baseline was 0 and themaximal value was 1.

The predictive power for patients’ future cognitive decline mea-

sured viaMMSE trajectories with andwithout biomarker profiles were

evaluated by the root mean squared error (RMSE). Differences in pre-

dictive performance between base and biomarker models were tested

using pairedWilcoxon rank sum tests.

2.4 Exploratory analyses

The normalization procedure for CSF biomarker values assumes that

the subgroups with CDR global score 0.5 in the MEMENTO and ADNI

cohorts are comparable and that the measures from the different

assays are equivalent up to a linear transformation. Furthermore, it

was assumed that volumentric MRI measures were directly compa-

rable between cohorts. To explore if these assumptions impacted the

results in the external validation study, a sensitivity analysis was done
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inwhich original biomarker valueswere used, but the coefficientswere

recalibrated. The details and results of this analysis based on the base

and full biomarker model are available in the supporting information.

To investigate the correlations between biomarker and predicted

patient progression on the disease continuum, partial correlation anal-

yses were performed in both the MEMENTO and ADNI cohorts. The

partial correlations measure the degree of association between pairs

of variables when adjusting for all other observed variables. The anal-

ysis included patient characteristics, biomarkers, and predicted dis-

ease progression obtained from base models with parameters esti-

mated separately for each cohort. The analyses assessed the indepen-

dent contribution of each biomarker to the correlation with the pre-

dicted disease progression. These contributionswere compared across

cohorts.

2.5 Clinical trial power analyses

For power calculations, we selected ADNI subjects with complete

13-item Alzheimer’s Disease Assessment Scale-Cognitive subscale30

(ADAS-Cog) scores at baseline, 6, 12, and 24 months (follow-up times

required to be within 2 months of visit time). We modeled trial

power under two different inclusion criteria. The first group, CDR

0.5, included subjects with baseline CDR global score 0.5. The sec-

ond group, Biomarker profile cut, included subjects with biomarker-

based predicted progression within the interquartile range of the CDR

0.5 group, but no requirement on CDR global score to evaluate if this

resulted in amore homogenous patient group.

In each of the above scenarios, we estimated the standard devia-

tions of ADAS-Cog changes at 6, 12, and 24 months separately using

two different linear regression models. The first adjusted for baseline

ADAS-Cog score, baseline CDR global score (only in the second sce-

nario), actual time since baseline, age, sex, and education level. The sec-

ond model adjusted for baseline ADAS-Cog score and the biomarker-

profile–based prediction of disease progression (B0 + xTB,i𝛽B)(tij − xTi 𝛽)

at the follow-up time tij. Based on the estimated standard deviations,

we computed the number of patients needed to achieve 90%power for

detecting a 1-point treatment effect on the 13-itemADAS-Cog.

3 RESULTS

3.1 Development and internal validation

The MEMENTO cohort included 2323 subjects. The distribution of

available biomarker measures within patients is shown in Figure S1

in supporting information. Three hundred eleven patients formed the

development set used to fit the disease progression models. Figure 2

shows the consort diagram for theMEMENTO cohort. Themedian age

was 69.5 years (range 42 to 91), with 54%women. Themedian number

of years of education was 16 (range 13 to 18). The internal validation

set used to examine generalizability of the model’s predictive perfor-

mance consisted of 59 subjects. These 59 subjects were similar to the

subjects in the development set on all measures. Baseline characteris-

tics are given in Tables S2 and S3 in supporting information.

The basemodel was fitted to the development dataset. The forward

selection search included effects of education and age on the patient’s

progression stage along the disease continuum and rate of cognitive

progression. No effect of sex was found for either parameters.

The results suggested that patients with higher level of education

had better cognitive scores in the early disease stages, but slightly

accelerated decline in the later stages and that younger patients

declined slower thanolder (Figure S2 in supporting information).While

earlier onset of AD has often been associated with increased rate of

cognitive decline,2 the current study had no requirements for the eti-

ology of symptoms that led to a subject visiting a memory clinic. Thus,

the apparent contradictory finding of slower rate of decline in younger

patients is likely due todifferences in etiology,which is corroboratedby

an observed Spearman correlation of −0.34 (P < .0001) between CSF

A𝛽1-42 to A𝛽1-40 ratio and age.

Three biomarker models were fitted using forward selection to

include normalized biomarker values to explain variation in pre-

dicted future cognitive trajectories in the base model. The MRI model

included measures of hippocampal volume, AD-signature meta-ROI

thickness andAD-signaturemeta-ROIvolume. TheCSFmodel included

CSF measures of total tau, A𝛽1-42, and A𝛽1-40 and after the selec-

tion procedure the full biomarker model included total tau in CSF, hip-

pocampal volume, A𝛽1-42 in CSF, AD-signature meta-ROI thickness,

and A𝛽1-40 in CSF. For an overview of the models and included vari-

ables see Table 1.

Parameter estimates, model diagnostics, and instructions for doing

the calculations for predicting a patient’s future cognitive decline is

available in the supporting information (pp. 2–3 and Table S4).

The predictive performance of all four models (base, MRI, CSF, and

the full biomarker model) were compared for both the development

and internal validation set. Figure 3 shows the model fit and predicted

progression of patients on the disease continuum for the base and

biomarkermodel in the development and internal validation set. Exam-

ples of the difference between subject-specific predicted locations for

the two models are shown in Figure 4. The predictions in both fig-

ures included the baseline MMSE score. The results of the predictions

excluding baselineMMSE are shown in Figure S3. The results in Table 2

show that including information from the full biomarker profile signifi-

cantly improved predictions in the validation set compared to the base

model (P= .0004 without MMSE; P< .0001 with MMSE). This was not

the case for the MRI model, which showed comparable results with

the base model on the validation set (P = .91 without MMSE; P =

.33 with MMSE). The CSF model was significantly better at predicting

future cognitivedecline compared to thebasemodel (P= .0077without

MMSE; P< .0001withMMSE). Compared to the full biomarker profile,

the CSFmodel performedworse on the development set (P = 0.0042

withoutMMSE;P < .0001withMMSE) but showedcomparable results

on the internal validation set (P = .20 without MMSE; P = .31 with

MMSE). Table S5 in supporting information presents the difference

in RMSE for the MRI and CSF models relative to the full biomarker

model.
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F IGURE 2 Consort diagram for theMEMENTO cohort. A𝛽, amyloid beta; AD, Alzheimer’s disease; CDR, Clinical Dementia Rating; CSF,
cerebrospinal fluid; FDG-PET, fluorodeoxyglucose positron emission tomography;MMSE,Mini-Mental State Examination;MRI, magnetic
resonance imaging; ROI, region of interest

TABLE 1 Overview of the presentedmodels andwhich variables are included for predicting the future cognitive decline and continuous
staging of patients

Demographics MRI CSF

Education Age

AD-signature

thickness

Hippocampal

volume

AD-signature

volume

Total

tau p-tau Aβ1-42 Aβ1-40

Base X X

MRI X X X X X

CSF X X X X X

Full biomarker X X X X X X X

CSF continuous X X X X

CSF discrete X X X X

Abbreviations: A𝛽, amyloid beta; AD, Alzheimer’s disease; CSF, cerebrospinal fluid; MRI, magnetic resonance imaging

The effect of using continuous measures of A𝛽1-42 and p-tau com-

pared to classifications of amyloid and tau positivity on the predictive

performance are presented in Table 3. The results of the models were

very similar suggestingonly small differences in using thediscretemea-

sures of CSF A𝛽1-42 and p-tau compared to the continuous biomarker

values for predicting future cognitive decline in a pre-dementia popu-

lation.

For further comparisonof theproposeddiseaseprogressionmodel’s

predictive performance, a random forest and a slope model were fit-

ted to the development set and predictions were made on the devel-

opment and validation sets with and without biomarker information

(Table S6 in supporting information). The biomarker models included

the five biomarkers that were selected for the full biomarker profile.

For all models the predictive performance improved when including
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F IGURE 3 Results for theMEMENTO
cohort for development and validation set (left
and right column, respectively) Top row, The
observedMini-Mental State Examination
(MMSE) scores plotted against months since
baseline. Middle row, Predicted disease
progression stages along the disease
continuum of basemodel and estimatedmean
trajectory (green). Bottom row, Predicted
disease progression stages of the biomarker
model and estimatedmean trajectory (green).
Time zero on the disease continuum is defined
as the average predicted disease time at
baseline of subjects with a baseline level of
Clinical Dementia Rating (CDR) global at 0

biomarker information, and on the internal validation set, the proposed

parametric disease progression model including baseline biomarker

profile andMMSE score performed best among all models.

3.2 External validation on ADNI

The developed biomarker model was externally validated on individ-

uals from the ADNI cohort. The external validation set consisted of

610patients (Figure5). Baseline characteristics of the individuals in the

external validation set are given in Table S2.

The RMSEs of the ADNI predictions calculated based on the devel-

oped base, MRI, CSF, and full biomarker model are given in the right-

hand column of Table 2. The results validated that incorporating differ-

ent biomarker modalities gave the greatest improvement of the pre-

dictive performance relative to the base model (P < .0001 both with

and without baseline MMSE). The CSF model did also significantly

improve prediction of future cognitive decline compared to the base

model (P < .0001 without baseline and P = .0013 without baseline

MMSE); however, the MRI model was only significantly better when

incorporating the baseline MMSE measure (P = .28 without base-

line and P = .0002 with baseline MMSE). The full biomarker model

showed significantly better performance compared to the MRI and

CSF model (full biomarker model vs. MRI model with baseline MMSE

P = .0345; all other P < .0001). The RMSEs are presented in Table

S5. Figure 6 shows the predicted progression stages along the disease

continuum for patients based on the base and biomarker model for the

ADNI cohort. Three patients are highlighted for comparison.

The external comparison of the continuous CSFmodel compared to

the discrete model showed a significant improvement of the continu-

ous model (P < .0001) when incorporating the baseline MMSE score

for prediction of future cognitive decline. The RMSEs are shown in

Table 3.

3.3 Exploratory analyses

Results of the recalibration analysis suggested little to no gain of recal-

ibrating the full biomarkermodel in ADNI. The recalibration results are

available in the supporting information.

The base model was fitted independently on the MEMENTO and

ADNI cohorts. Partial correlations between patient characteristics,
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F IGURE 4 Examples of future predicted decline of three patients
in the development set for both base and biomarker model. The
observedMini-Mental State Examination (MMSE) scores of patients
are shownwith dashed colored lines and themodel predicted scores
by the colored solid lines. The black dashed lines represent marginal
95% prediction intervals for eachmodel conditional on the continuous
staging. The continuous staging is determined by including the
baselineMMSE score

biomarkers, and predicted disease progression stages are compared

across cohorts and shown in Table 4. There were substantial par-

tial correlations (i.e., explained variation after adjusting for all other

biomarkers) between the CSF measures (all partial correlation magni-

tudes >0.3), which may be partially ascribed to the biomarkers being

measured from the same physical sample. Additionaly, there were

negative partial correlations between age and hippocampal volume

and composite thickness score, suggesting an age-related reduction

of the corresponding brain areas that is independent of the biomark-

ers and predicted disease progressions. The effects were comparable

across cohorts. The biomarkers with greatest independent effects on

patient progressions in the MEMENTO cohort were hippocampal vol-

ume, A𝛽1-42, and total tau. In comparison, the biomarkers with the

largest effects on progressions in the ADNI cohort were total tau,

AD-signature meta-ROI thickness, and A𝛽1-40. These apparent differ-

ences are partially due to correlations between biomarkers (see Table

S7 in supporting information), which is corroborated by the agreement

across cohorts of the directional effects of biomarkers on the predicted

progression stages in the partial correlation analysis that adjusts for

these correlations (Table 4).
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TABLE 3 Rootmean squared errors measuring themodel performance of predicting future cognitive decline inMEMENTO and ADNI

MEMENTO ADNI

Dichotomized CSF ΔContinuous CSF Dichotomized CSF ΔContinuous CSF

Without baseline

MMSE

Development 2.27 (2.09, 2.45) −0.028 (−0.066, 0.012) – –

Validation 2.50 (2.03, 2.99) 0.033 (−0.031, 0.10) 2.49 (2.31, 2.68) −0.019 (−0.07, 0.03)

With baseline

MMSE

Development 2.30 (2.10, 2.51) −0.031 (−0.048, −0.013) – –

Validation 1.96 (1.72, 2.18) −0.01 (−0.076, 0.061) 2.20 (2.04, 2.36) −0.072 (−0.097, −0.048)

Notes: Comparison of predictive performance of models using dichotomized versus continuous measures of p-tau and A𝛽1-42. Negative Δ-values indicate
better prediction than the dichothomizedmodel. Bootstrapped 95%-CIs are shown in parentheses.

Abbreviations: A𝛽, amyloid beta; ADNI, Alzheimer’s Disease Neuroimaging Initiative; CI, confidence interval; CSF, cerebrospinal fluid; MMSE, Mini-Mental

State Examination.

F IGURE 5 Alzheimer’s DiseaseNeuroimaging Initiative (ADNI) consort diagram. CDR, Clinical Dementia Rating; CSF, cerebrospinal fluid;MRI,
magnetic resonance imaging

TABLE 4 Partial correlations between the predicted disease progression and biomarker observations

Education Age Total tau

Hippocampal

volume Aβ1-42

AD-signature

meta-ROI

thickness Aβ1-40

Education

Age 0.0579

(0.0273)

Total tau 0.0260

(−0.0609)

−0.112

(−0.00502)

Hippocampal volume 0.207

(0.125)

−0.232

(−0.212)

−0.0788

(−0.130)

A𝛽1-42 0.154

(0.0874)

−0.149

(−0.0431)

−0.427

(−0.527)

−0.0937

(0.0375)

AD-signature

meta-ROI thickness

0.0259

(0.0727)

−0.209

(−0.221)

−0.123

(−0.102)

0.206

(0.307)

−0.108

(−0.00562)

A𝛽1-40 −0.000941

(0.0131)

0.162

(0.0795)

0.653

(0.727)

0.0350

(0.101)

0.380

(0.507)

0.0501

(0.113)

Education 0.204

(0.338)

0.293

(−0.0885)

0.164

(0.254)

−0.269

(−0.148)

−0.198

(−0.0996)

−0.153

(−0.206)

−0.100

(−0.177)

Notes: The predicted disease progression is estimated via fitted base models on both the MEMENTO and ADNI cohort. The partial correlations from the

ADNI cohort are shown in parentheses.

Abbreviations: A𝛽, amyloid beta; AD, Alzheimer
′

sdisease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; ROI, region of interest.
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F IGURE 6 Examples of future predicted decline of three
Alzheimer’s Disease Neuroimaging Initiative (ADNI) subjects in the
development set for both base and biomarker model developed in the
MEMENTO cohort. The observedMini-Mental State Examination
(MMSE) scores of patients are shownwith dashed colored lines and
themodel predicted scores by the colored solid lines. The black
dashed lines represent marginal 95% prediction intervals for each
model conditional on the continuous staging. The continuous staging is
determined by including the baselineMMSE score

3.4 Clinical trial analyses

The estimated sample sizes needed to achieve 90% power to detect

a 1-point treatment effect on ADAS-Cog are given in Table S8 in sup-

porting information. In theCDR0.5 group, adjusting for the biomarker-

profile–based prediction of disease progression resulted in sample size

reductions of 10% to 11% for 6-, 12-, and 24-month studies com-

pared to the adjustment for individual demographic variables. For the

Biomarker profile cut group, the reductions associated with adjusting

for biomarker-profile–based prediction of disease progression were

smaller (1% to 8%) due to increased homogeneity in progression. Com-

pared to the CDR 0.5 group, sample requirements were smaller in all

cases. For a 24-month study, including patients based on the biomarker

profile prediction of disease progression and adjusting the analyses for

this resulted in an additional 20% reduction, leading to a total reduc-

tion of 28% or 171 fewer patients required per arm compared to not

adjusting for the biomarker profile.

4 DISCUSSION

In this study we have developed a disease prediction model using

age, education, measures of Aβ and total tau in CSF, and volumetric

MRI measures from participants of the FrenchMEMENTO cohort. We

showed that incorporating individual biomarker profiles significantly

improved the ability to predict patients’ future course of cognitive

decline. Themodelwas externally validated on subjects fromADNI and

shown to give a similar improvement in predicting patient-level future

cognitive trajectories. An application derived from this model to offer

personalized prognosis of any patient at the time of diagnosis has been

developed to illustrate the potential use in clinical practice (https://

disease-progression.shinyapps.io/disease_progression/). The applica-

tion provides an estimate of both future cognitive progression and

the location on the disease continuum via specified demographics

and biomarker levels based on the full biomarker model. We fur-

ther showed that this model could be used to optimize power of

clinical trials by defining inclusion criteria leading to a more homo-

geneous patient population, which in turn decreases sample size

requirements.

The developed biomarker profile included A𝛽1-40, A𝛽1-42, and

total tau in CSF, and hippocampal volume and AD-signature meta-

ROI thickness measured from MRI. Both MRI and CSF collection are

routinely done in some clinical settings and often required at screen-

ing or baseline visits in AD clinical trials. In these settings, the pro-

posed biomarker profile would enable better prognosis of patients’

future progression path at no additional cost and aid selection of more

homogeneous trial cohorts. A statistical power analysis suggested that

this could reduce sample size requirements for clinical trials by up to

28%. Furthermore, such predictions could for example be used in adap-

tive trials to dynamically adjust sample size, or to improve power of

interim analyses by comparing the progression of study participants to

observed progression patterns of patients at matching disease stages

from external cohorts. The proposed biomarker profile only included

a subset of biomarkers available. Future work should investigate a

larger variety of biomarkers for even better prognosis of patients’ dis-

ease progression and explore the value of minimally invasive plasma

biomarkers for phospho-tau31,32 and neurofilament light.33

The predictive performance of the developed biomarker profile

was compared to single-modality models incorporating either CSF or

MRI measures. The full biomarker profile was shown to significantly

improve prediction of future cognitive decline over the single-modality

MRI model and CSF model. Additionally, we found that dichotomiz-

ing CSF measures of A𝛽1-42 and p-tau resulted in a slight loss in the

model’s ability to predict patients’ future decline, suggesting a slight

information loss associatedwithdichotomizing amyloid andp-taumea-

sures. This is in line with recent findings of the implications of mapping

biomarkers to ATN profiles from Swedish BioFINDER studies.19

This study has some limitations. The MMSE scale was used as

the outcome measure, but it is primarily sensitive in mild to moder-

ate dementia.34 While several years’ follow-up was used to predict

future cognitive decline, other cognitive scales with better sensitivity

early in disease could potentially improve the biomarker profile fur-

ther. Another limitation is that we studied a limited set of biomarkers

with a focus on AD pathology, while the goal was to predict cognitive

decline anddementia thatwasnot restricted toADpatients. Biomarker

profile staging could potentially be improved by inclusion of unspe-

cific markers of neuronal injury such as neurofilament light33,35 and

https://disease-progression.shinyapps.io/disease_progression/
https://disease-progression.shinyapps.io/disease_progression/
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vascular biomarkers.36,37 However, it is worth noting that FDG-PET

was not selected in the data-driven model selection, even though it

is a non-specific marker of neurodegeneration and potentially a non-

specific biomarker of vascular dysfunction.37 Finally, the differences

in CSF biomarker assays between cohorts required normalization of

variables in thevalidation study. Thenormalizationprocedure assumed

similarity of biomarker distributions across assays. While a recalibra-

tion analysis did not find evidence of deviation from this assump-

tion in these cohorts, it may not be satisfied in general. Hence fur-

ther analyses are required to investigate the impact of assays with dif-

fering sensitivities on the personalized predicted disease progression

stage.

In summary, our study demonstrates that biomarkers that are rou-

tinely collected in some clinical settings have a currently unused poten-

tial to improve patient prognosis of future cognitive decline in clini-

cal practice and may be useful for optimizing trial design. Overall, this

study reflects that individual patient trajectories can be modeled with

continuous measures giving the possibility of predicting future cogni-

tive decline at any time point.
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